US ERA ARCHIVE DOCUMENT

#### DATA EVALUATION RECORD AQUATIC INVERTEBRATE LIFE CYCLE TEST GUIDELINE 72-4(B)

Metolachlor CHEMICAL: PC Code No.:

TEST MATERIAL: Metolachlor Technical 97%

3. CITATION:

Arthur E. Putt Authors:

Metolachlor Technical - The Chronic Title:

Toxicity to Daphnia magna Under Flow-

Through Conditions

Study Completion Date: September 22, 1995

> Laboratory: Springborn Laboratories, Inc., Wareham,

Sponsor: Ciba-Geigy Corporation, Greensbor , NC

Laboratory Report ID: 95-8-6061

MRID No.: 438026-01 DP Barcode: D219942

REVIEWED BY: Harry A. Winnik

> Biologist EFED/EEB

Signature: Month Office Date: 12/96

APPROVED BY:

Henry Craven

Supervisory Biologist

EFED/EEB

Signature:

lany T. Com

6. STUDY PARAMETERS:

> Age of Test Organism: Definitive Test Duration:

Study Method:

<24 hours 21 days

Flow-Through Type of Concentrations: Mean Measured

7. CONCLUSIONS: This study is scientifically sound but does not **fulfill** the guideline requirements  $(72-4(\bar{b}))$  for a freshwater invertebrate life-cycle test using Daphnia magna. The integrity of this study is questionable since measured concentrations were highly variable at all treatment levels throughout the study. The highest measured concentration was as much as 3.7 times higher than the lowest measured concentration within the same treatment level which exceeded the rejection rate criteria of 1.5 times. The study did not include raw growth data thus the growth data statistics could not be verified. This factor, plus the variability in the measured Metolachlor concentration, resulted in the classification of the study as supplemental. This study is not upgradable but does not need to be repeated at this time contingent upon the registrants acceptance of the NOEC LOEC and MATC values of 3.2, 6.9, and 4.7 ppm, respectively, based on growth and reproduction and the lowest measured concentration of each treatment level.

# DATA EVALUATION RECORD AQUATIC INVERTEBRATE LIFE CYCLE TEST GUIDELINE 72-4(B)

| 1.        | CHEMICAL: Metolachlor                                                               | PC Code No.: 108801              |
|-----------|-------------------------------------------------------------------------------------|----------------------------------|
| 2.        | TEST MATERIAL: Metolachlor Technical                                                | Purity: 97%                      |
| 3.        | CITATION: Authors: Arthur E. Putt                                                   |                                  |
|           | Title: Metolachlor Technica                                                         |                                  |
|           | Toxicity to <i>Daphnia</i> Through Conditions                                       | magna Under Flow-                |
| Stu       | dy Completion Date: September 22, 1995                                              |                                  |
|           |                                                                                     | ries, Inc., Wareham,             |
|           | Sponsor: Ciba-Geigy Corporat                                                        | ion, Greensbor <del>o</del> , NC |
| <u>La</u> | boratory Report ID: 95-8-6061                                                       | , i                              |
|           | MRID No.: 438026-01                                                                 |                                  |
|           | DP Barcode: D219942                                                                 |                                  |
| 4.        | REVIEWED BY: Rosemary Graham Mora, M.S. Toxicologist, KBN Engineering and Applic    | ., Aquatic<br>ed Sciences, Inc.  |
|           |                                                                                     | Date: 5/7/96                     |
|           | APPROVED BY: Pim Kosalwat, Ph.D., Senio<br>KBN Engineering and Applied Sciences, In |                                  |
|           | signature: P. Kosalwat                                                              | Date: 5/7/96<br>5-120/96         |
| 5.        | APPROVED BY:                                                                        |                                  |
|           | Signature: William Patrit for Harry Xxxx                                            | Date: 6/5/9/                     |
| 6.        | STUDY PARAMETERS:                                                                   | . 'क<br>इ.                       |
|           | Age of Test Organism: ≤24 h                                                         | ours                             |
|           | Definitive Test Duration: 21 da                                                     | Xs                               |
|           | / Study Method: Flow-                                                               | Through                          |

7. CONCLUSIONS: This study is not scientifically sound and does not fulfill the guideline requirements for a freshwater invertebrate life-cycle test using Daphnia magna. The integrity of this study is questionable since measured concentrations were highly variable at all treatment levels throughout the study. The highest measured concentration was as much as 3.7 times higher than the lowest measured concentration within the same treatment level. Based on mean measured concentrations, the MATC was between 5.9 and 12.0 ppm ai. The geometric mean MATC was 8.4 ppm ai.

Mean Measured

Type of Concentrations:

10,50

Results Synopsis: Based on the lowest measured concentration of each treatment level, the following values will be considered valid for this study:

NOEC: 3.2 ppm LOEC: 6.9 ppm MATC: 4.7 ppm

#### 8. ADEQUACY OF THE STUDY:

- A. Classification: supplemental
- B. Rationale: The acceptable values are based on the lowest measured concentration of each treatment level.
- C. Repairability: No
- 9. <u>GUIDELINE DEVIATIONS</u>: Since there is no EPA's SEP for a flow-through daphnid life-cycle test, the SEP for static renewal tests was used as a general guidance in this data validation.
  - 1. The measured concentrations of test material in the exposure solutions were highly variable at all treatment levels throughout the study. The highest measured concentration was as much as 3.7 times higher than the lowest measured concentration within the same treatment level.
  - 2. Individual growth data were not included in the report; therefore, the reviewer could not verify the author's conclusions.

#### 10 SUBMISSION PURPOSE:

#### 11. MATERIALS AND METHODS:

#### A. Test Organisms/Acclimation:

| Guideline Criteria Reported Information |                  |  |  |
|-----------------------------------------|------------------|--|--|
| <u>Species</u><br>Daphnia magna         | Daphnia magna    |  |  |
| Source                                  | In-house culture |  |  |

| Guideline Criteria                                                                                                                               | Reported Information                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Parental Acclimation Conditions Parental stock must be maintained separately from the brood culture in dilution water and under test conditions. | Parental acclimation conditions were not reported. Daphnid cultures were maintained under similar conditions as those used during the test. |
| <u>Parental Acclimation Period</u><br>At least 21 days.                                                                                          | Not reported.                                                                                                                               |
| Age of Parental Stock At least 10-12 days old at the beginning of the acclimation period.                                                        | Not reported.                                                                                                                               |
| Food Synthetic foods (trout chow), algae, or synthetic foods in combination with alfalfa yeast and algae.                                        | Ankistrodesmus falcatus                                                                                                                     |
| Food Concentration 5 mg/l (dry wt.) of synthetic food or 108 cells/l of algae is recommended.                                                    | 3.0 ml of algal suspension (4 X 10 <sup>7</sup> cells/ml) two to three times daily                                                          |
| Were daphnids in good health during acclimation period?                                                                                          | Not reported.                                                                                                                               |

## B. Test System:

| Guideline Criteria                                                                                                                     | Reported Information                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Test Water Unpolluted well or spring that has been tested for contaminants, or appropriate reconstituted water (see ASTM for details). | Fortified well water which was filtered to remove potential organic contaminants. |  |
| Water Temperature  20°C ±2°C. Must not deviate  from 20°C by more than 5°C for  more than 48 hours.                                    | Range: 20 ±0.7°C (daily measurements); 19-21°C (continuous measurement)           |  |

|                                                                                                                                                                                                                      | Reported Information                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Guideline Criteria                                                                                                                                                                                                   |                                                                                 |  |  |
| pH 7.6 to 8.0 is recommended. Must not deviate by more than one unit for more than 48 hours.                                                                                                                         | 7.9-8.3                                                                         |  |  |
| Total Hardness 160 to 180 mg/l as CaCO <sub>3</sub> is recommended.                                                                                                                                                  | Mean total hardness of 170-180 mg/l as CaCO <sub>3</sub>                        |  |  |
| <pre>Dissolved Oxygen Renewal: must not drop below 50% for more than 48 hours. Flow-through: ≥ 60% throughout test.</pre>                                                                                            | Mean of ≥92% of saturation throughout the test                                  |  |  |
| Test Vessels or Compartments  1. Material: Glass, No. 316   stainless steel, or   perfluorocarbon plastics  2. Size: 250 ml with 200 ml   fill volume is preferred;   100 ml with 80 ml fill   volume is acceptable. | 1. Glass.  2. 1.6-liter battery jars with a fill volume of approximately 1.4 l. |  |  |
| Covers Renewal: Test vessels should be covered with a glass plate. Flow-through: openings in test compartments should be covered with mesh nylon or stainless steel screen.                                          | Test vessels had screen-<br>covered holes on each side.                         |  |  |
| Type of Dilution System  Must provide reproducible supply of toxicant.  Intermittent flow proportional diluters or continuous flow serial diluters should be used.                                                   | Intermittent-flow proportional diluter                                          |  |  |
| Flow Rate Consistent flow rate of 5-10 vol/24 hours, meter systems calibrated before study and checked twice daily during test period.                                                                               | 6 volume replacements/24 hours                                                  |  |  |

| Guideline Criteria                                                                                                                                                                  | Reported Information                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Aeration Dilution water should be vigorously aerated, but the test tanks should not be aerated.                                                                                     | Not reported. D.O. levels were ≥92% of saturation throughout the test. |  |
| <pre>Photoperiod 16 hours light, 8 hours dark.</pre>                                                                                                                                | 16 hours light, 8 hours dark                                           |  |
| Solvents Not to exceed 0.5 ml/l for static tests or 0.1 ml/l for flow-through tests. Acceptable solvents are dimethyl formamide, triethylene glycol, methanol, acetone and ethanol. | Solvent: acetone Maximum conc.: 0.091 ml/1                             |  |

# C. Test Design:

| Guideline Criteria                                                                                                                                                                 | Reported Information                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| <u>Duration</u><br>21 days                                                                                                                                                         | 21 days                                                                                                                 |  |  |
| Nominal Concentrations Control(s) and at least 5 test concentrations; dilution factor not greater than 50%.                                                                        | Dilution water control, solvent control (0.091 ml acetone/1) and 5 nominal concentrations: 2.5, 5.0, 10, 20, 40 mg ai/1 |  |  |
| Number of Test Organisms  22 daphnids/level;  7 test chambers should contain  1 daphnid each, and 3 test  chambers should contain 5  daphnids each.                                | 10 daphnids/replicate; 4 replicates per treatment and control                                                           |  |  |
| Test organisms randomly or impartially assigned to test vessels?                                                                                                                   | Yes                                                                                                                     |  |  |
| Renewal Parent daphnids in all beakers must be transferred to containers with fresh test solution (< 4 hours old) three times each week (e.g. every Monday, Wednesday and Friday). | N/A                                                                                                                     |  |  |

| Guideline Criteria                                                                                                                                                                                                                                                                                                                                                                                            | Reported Information                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Water Parameter Measurements  1. Dissolved oxygen must be measured at each concentration at least once a week.  2. pH, alkalinity, hardness, and conductance must be measured once a week in one test concentration and in one control.  3. Temperature should be monitored at least hourly throughout the test in one test chamber, and near the beginning, middle and end of the test in all test chambers. | <ol> <li>D.O. and pH were measured weekly in each replicate and daily in one replicate of each treatment and control group.</li> <li>Alkalinity, hardness, and conductivity were measured on Days 0, 7, 14, and 21 in one replicate of each treatment and control group.</li> <li>Temperature was measured daily in one replicate of each treatment and control group, weekly in each replicate, and continuously in one control replicate.</li> </ol> |  |
| Chemical Analysis Needed if chemical was volatile, insoluble, or known to absorb, if precipitate formed, if containers were not steel or glass, or if flow- through system was used.                                                                                                                                                                                                                          | Measured in two alternate replicates of each treatment and control group on Days 0, 7, 14, and 21.                                                                                                                                                                                                                                                                                                                                                     |  |

Other Applicable Information: Throughout the exposure period, undissolved test material was observed in the diluter's mixing chamber and was removed twice daily. No undissolved test material was observed in diluter's chemical cells or exposure solutions during the test. To verify that no undissolved test material was present in the exposure solutions, additional samples were filtered prior to analysis.

### 12. REPORTED RESULTS:

#### A. General Results:

| Guideline Criteria                                                           | Reported Information |
|------------------------------------------------------------------------------|----------------------|
| Quality assurance and GLP compliance statements were included in the report? | Yes                  |

| Guideline Criteria                                                                                                                                                                                                                                                                                             | Reported Information                                                                                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Control Mortality ≤ 30%                                                                                                                                                                                                                                                                                        | 0% in dilution water control; 7.5% (3 out of 40) in solvent control                                                                                                                                   |  |
| Did daphnids in each control produce at least 40 young after 21 days?                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                   |  |
| Were no ephippia produced in any of the controls?                                                                                                                                                                                                                                                              | Not reported.                                                                                                                                                                                         |  |
| <ul> <li>Data Endpoints</li> <li>Survival of first-generation daphnids,</li> <li>Number of young produced per female,</li> <li>Dry weight (required) and length (optional) of each first generation daphnid alive at the end of the test,</li> <li>Observations of other effects or clinical signs.</li> </ul> | <ul> <li>Survival of first- generation daphnids,</li> <li>Number of young produced,</li> <li>Dry weight and length of surviving first-generation daphnids,</li> <li>Clinical observations.</li> </ul> |  |
| Raw data included?                                                                                                                                                                                                                                                                                             | Only survival and reproduction data were included. Raw data for length and dry weight were not included.                                                                                              |  |

## Effects Data:

| Toxicant<br>Concentration<br>(ppm ai) |                          | # dead<br>daphnids/ | Mean<br>Number      | Mean<br>Total  | Mean<br>Dry    |
|---------------------------------------|--------------------------|---------------------|---------------------|----------------|----------------|
| Nominal                               | Mean<br>Measured<br>(SD) | total<br>(%)        | Young per<br>Female | Length<br>(mm) | Weight<br>(mg) |
| Control                               | <0.30                    | 0/40 (0%)           | 92                  | 4.9            | 1.00           |
| Solvent<br>Control                    | <0.30                    | 3/40 (7.5%)         | 91                  | 4.9            | 1.05           |
| 2.5                                   | 0.87<br>(0.44)           | 0/40 (0%)           | 90                  | 4.8            | 0.92           |
| 5.0                                   | 1.8 (0.90)               | 2/40 (5%)           | 92                  | 4.8            | 0.88           |

| Toxicant<br>Concentration<br>(ppm ai) |                          | # dead<br>daphnids/ | Mean<br>Number      | Mean<br>Total  | Mean<br>Dry    |
|---------------------------------------|--------------------------|---------------------|---------------------|----------------|----------------|
| Nominal                               | Mean<br>Measured<br>(SD) | total<br>(%)        | Young per<br>Female | Length<br>(mm) | Weight<br>(mg) |
| 10                                    | 2.9                      | 2/40 (5%)           | 104                 | 4.9            | 1.00           |
| 20                                    | 5.9<br>(3.1)             | 1/40 (2.5%)         | 106                 | 4.9            | 1.10           |
| 40                                    | 12<br>(5.8)              | 0/40 (0%)           | 54ª                 | 4.7            | 0.89ª<br>-     |

<sup>\*</sup> Significantly different from the pooled controls  $(p \le 0.05)$ .

<u>Toxicity Observations</u>: Throughout the study, no offspring were observed to be immobilized in any treatment or control group. Observations of adult daphnids revealed no treatment-related effects.

## B. Statistical Results:

Most sensitive endpoint:

| Endpoint     | Method         | NOEC<br>(ppm ai) | LOEC<br>(ppm ai) |
|--------------|----------------|------------------|------------------|
| Reproduction | Williams' Test | 5.9              | 12               |
| Weight       | Williams' Test | 5.9              | 12               |
| Length       | Williams' Test | 5.9              | 12-              |

### 13. VERIFICATION OF STATISTICAL RESULTS:

Most sensitive endpoint:

| Endpoint                 | Method                                                | NOEC<br>(ppm ai) | LOEC<br>(ppm ai) |
|--------------------------|-------------------------------------------------------|------------------|------------------|
| Reproduction             | ANOVA with<br>Bonferroni t-test<br>and Williams' test | 5.9              | 12               |
| Weight Visual inspection |                                                       | 5.9              | 12               |
| Length                   | Visual inspection                                     | 5.9              | 12               |

14. <u>REVIEWER'S COMMENTS</u>: Statistical analysis for growth could not be verified since individual growth data were not included in the report. By visual inspection, growth appeared to be affected only in the highest test concentration.

This study is scientifically sound but **does not** fulfill the guideline requirements for a daphnid life-cycle test. The integrity of this study is questionable since measured concentrations were highly variable at all treatment levels. With a high water solubility (760 ppm at 22°C as reported on page 14), it is not understandable why metolachlor precipitated out of solutions at the concentrations tested.

Prior to test initiation, the test system was reported to be maintaining test solutions at 22-32% of nominal concentrations; according to the author this "established that the diluter system was maintaining sufficient concentrations of test material in the exposure vessels to initiate the definitive study." During the in-life portion of the definitive test, the author reports that mean recoveries were consistently within the range of 29 to 37% of nominal fortified levels and that exposure samples which were filtered prior to analysis demonstrated recoveries consistent with the recoveries for the unfiltered samples. individual sample results demonstrated recoveries which ranged from 11 to 66% of nominal concentrations; the highest measured concentration was as much as 3.7 times higher than the lowest measured concentration within each treatment level (Tables 2 and 3, attached).

Several problems may be implied by the variability (e.g., a test material which is unstable under the study conditions, improperly prepared diluter stock solutions, or a diluter system which did not function properly during the study). The report did not include analysis of the diluter stock solutions; consequently, this factor cannot be dismissed. Results of the quality control samples indicate a problem with the diluter system (reportedly, the system function was consistent) or an effect of the solvent on the stability of the test material (note: it is unclear whether the solvent was used in the preparation of the quality control samples). Twenty of the 24 quality control samples demonstrated recoveries which ranged from 82.2 to 106.7% of nominal fortified concentrations (page 86, attached). The reviewer suggests that the cause of variability of the measured concentrations is unclear and the integrity of this study is questionable.

This study is classified as **Supplemental**. Based on the parameters of growth and reproduction and on the lowest measured concentration of each treatment level the NOEC, LOEC, and MATC values are 3.2, 6.9, and 4.7 ppm, respectively.

Table 2. Concentrations of metolachlor technical in replicate (unfiltered) exposure solutions during the 21-day chronic test with daphnids (*Daphnia magna*).

| Nominal<br>Concentration |                                                                                          | Meas                                                                             | ured Concent                                                                                  | ration (mg A.i./L                                                                                       | _)*                                                                                                                                   | <b>₹</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (mg A.I./L)              | Day 0 <sup>b</sup>                                                                       | Day 7°                                                                           | Day 14 <sup>b</sup>                                                                           | Day 21°                                                                                                 | Mean(SD)⁴                                                                                                                             | Percent<br>Nominal*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control                  | <0.22<br><0.22                                                                           | <0.23<br><0.23                                                                   | <0.26<br><0.26                                                                                | <0.30<br><0.30                                                                                          | NA                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solvent Control          | <0.22<br><0.22                                                                           | <0.23<br><0.23                                                                   | <0.26<br><0.26                                                                                | <0.30<br><0.30                                                                                          | NA                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.5                      | 0.95<br>0.88                                                                             | 0.51<br>0.28                                                                     | 0.69<br>0.65                                                                                  | 1.5 4°<br>1.5                                                                                           | 20 0.87(0.44) 58                                                                                                                      | ) 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | high<br>60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.0                      | 1.4 <sup>g</sup><br>1.7                                                                  | 1.1<br>0.92                                                                      | 1.7<br>1.5                                                                                    | 3.2<br>3.3                                                                                              | t 20 1.8 (0.90) 56                                                                                                                    | 20 37<br><b>₹</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                       | 2.5<br>2.1                                                                               | 1.6<br>1.5                                                                       | 2.3<br>2.1                                                                                    | 5.6 4 <b>6</b>                                                                                          | 2.9 (1.6) 5/                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20                       | 5.2<br>5.1                                                                               | 3.1<br>3.3                                                                       | 4.7<br>4.5                                                                                    | 11<br>11 4                                                                                              | 795 5.9 (3.1) 5 3                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40                       | 11<br>12                                                                                 | 7.1<br>6.6                                                                       | 10<br>9 <sub>.</sub> 5                                                                        | 22<br>21 4                                                                                              | e/o 12 (5.8) 54                                                                                                                       | 0 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| QC <sup>e</sup> #1       | 38.6<br>(40.0) <sup>h</sup>                                                              | 40.7<br>(40.0)                                                                   | 35.9<br>(40.0)                                                                                | 39.0<br>(40.0)                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC #2                    | 9.65<br>(10.0)                                                                           | 9.49<br>(10.0)                                                                   | 9.24<br>(10.0)                                                                                | 7.20 <sup>1</sup><br>(10.0)                                                                             |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC #3                    | 2.95<br>(2.50) <sup>i</sup>                                                              | 2.44<br>(2.50)                                                                   | 4.65<br>(2.50) <sup>i</sup>                                                                   | 2.34<br>(2.50)                                                                                          | 47                                                                                                                                    | -41 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | Concentration (mg A.I./L.)  Control  Solvent Control  2.5  5.0  10  20  40  QC*#1  QC #2 | Concentration (mg A.I./L)         Day 0 <sup>b</sup> Control         <0.22 <0.22 | Concentration (mg A.I./L)         Day 0 <sup>b</sup> Day 7 <sup>c</sup> Control         <0.22 | Concentration (mg A.I./L)         Day 0b         Day 7c         Day 14b           Control         <0.22 | Concentration (mg A.I./L)         Day 0 <sup>b</sup> Day 7 <sup>c</sup> Day 14 <sup>b</sup> Day 21 <sup>c</sup> Control         <0.22 | Concentration (mg A.I./L.)  Day 0 <sup>b</sup> Day 7 <sup>c</sup> Day 14 <sup>b</sup> Day 21 <sup>c</sup> Mean(SD) <sup>d</sup> Control  C | Concentration (mg A.I./L.)  Day 0*  Day 7*  Day 14*  Day 21*  Mean(SD)*  Mean(SD)*  Percent Nominal*  Control  Control  Control  Co.22  Co.23  Co.26  Co.30  NA'  NA  NA  Solvent Control  Co.22  Co.23  Co.26  Co.30  NA  NA  NA  NA  Solvent Control  Co.22  Co.23  Co.26  Co.30  NA  NA  NA  NA  NA  NA  2.5  Day 14*  NA  NA  NA  NA  NA  NA  Co.26  Co.30  NA  NA  NA  NA  NA  NA  Co.26  Co.30  NA  NA  NA  NA  NA  Co.27  Co.28  Co.29  Co.29  Co.23  Co.26  Co.30  NA  NA  NA  NA  NA  NA  Co.29  Co.30  NA  NA  NA  NA  NA  Co.20  Co.30  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  NA  NA  Co.30  Co.30  Co.30  NA  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  NA  Co.30  Co.30  NA  NA  NA  NA  Co.30  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  Co.30  Co.30  Co.30  NA  NA  NA  NA  NA  NA  Co.30  NA  NA  NA  NA  NA  NA  Co.30  Co.30  Co.30  Co.30  Co.30  Co.30  Co.30  Co.30  NA  NA  NA  NA  NA  NA  NA  NA  NA  N | Concentration (mg Al./L)  Control  Cont |

Measured concentrations were calculated based on the actual analytical (unrounded) data and not the rounded (two significant figures) data presented in this table. Mean measured concentrations were calculated based on days 0, 7, 14 and 21.

One water sample was collected from each replicate (A and B).

One water sample was collected from each replicate (C and D).

SD = standard deviation

Mean Percent Recovery = 39%

NA = Not applicable.

<sup>&</sup>lt;sup>9</sup> QC = Quality Control sample

h Nominal fortified concentration for each QC sample is presented in parentheses.

Percent recovery for this QC sample was outside the standard range accepted by this laboratory (i.e., ± 3 standard deviations from the mean recovery established during the method validation/recovery study, Appendix V).

Table 3. Concentrations of metolachlor technical in replicate (filtered) exposure solutions during the 21-day chronic test with daphnids (*Daphnia magna*).

| Nominal                      |                             | Meas           | ured Concenti               | ation (mg A.I./ | L)*                   | <b>2</b>            |
|------------------------------|-----------------------------|----------------|-----------------------------|-----------------|-----------------------|---------------------|
| Concentration<br>(mg A.I./L) | Day 0°                      | Day 7°         | Day 14 <sup>b</sup>         | Day 21°         | Mean(SD) <sup>4</sup> | Percent<br>Nominal* |
| Control <sup>f</sup>         | <0.22                       | <0.23          | <0.26                       | <0.30           | NAª                   | <b>N</b> A          |
| Condo                        | <0.22                       | <0.23          | <0.26                       | <0.30           | 190                   | NACA.               |
| Solvent Control <sup>f</sup> | <0.22                       | <0.23          | <0.26                       | <0.30           | NA                    | NA                  |
|                              | <0.22                       | <0.23          | <0.26                       | <0.30           |                       | ,                   |
|                              |                             |                |                             |                 | E                     | 1101                |
| 2.5                          | 0.67<br>0.64                |                |                             |                 | 1.2 (0.66)            | 20                  |
| 5.0                          |                             |                |                             |                 | •                     | <b>≛</b> .          |
| 5.0                          | _                           |                |                             |                 |                       | •                   |
| 10                           | 1.9                         |                |                             |                 | 1.7(NA)               |                     |
|                              | 1.6.                        |                |                             |                 |                       |                     |
| 20                           | -                           |                | 3.2                         | 9.3             | 6.2 (3.7)             | 31                  |
|                              | <del>-</del>                |                | 2.7                         | 9.5             |                       |                     |
| 40                           | 8.1<br>9.6                  | 5.7<br>6.8     | 7.6<br>9.9                  | 19<br>17        | 10 (4.8)              | 26                  |
| QCh #1                       | 32.9<br>(40.0) <sup>i</sup> | 42.7<br>(40.0) | 41.2<br>(40.0)              | 37.1<br>(40.0)  |                       |                     |
| QC #2                        | 8.49<br>(10.0)              | 9.79<br>(10.0) | 10.1<br>(10.0)              | 8.75<br>(10.0)  |                       |                     |
| QC #3                        | 2.27<br>(2.50)              | 2.30<br>(2.50) | 4.53<br>(2.50) <sup>i</sup> | 2.44<br>(2.50)  |                       |                     |

Measured concentrations were calculated based on the actual analytical (unrounded) data and not the rounded (two significant figures) data presented in this table. Mean measured concentrations were calculated based on days 0, 7, 14 and 21.

One water sample was collected from each replicate (A and B).

One water sample was collected from each replicate (C and D).

SD = standard deviation.

Mean percent recovery = 26%

Control solutions were unfiltered.

NA = Not applicable.

Description of the property of the property

Nominal fortified concentration for each QC sample is presented in parentheses.

Percent recovery for this QC sample was outside the standard range accepted by this laboratory (i.e., ± 3 standard deviations from the mean recovery established during the method validation/recovery study, Appendix V).

SPRINGBORN LABORATORIES, INC.

Page 21

#### DATA SUPPLARY TABLE FOR QUALITY CONTROLS

Sponsor: Test Material: CIBA GEIGT METOLACHLOR

Project No.: 1781-0195-6484-130

Test Type: Data Entered Sy: 21 DAY LIFE CYCLE W/D. MAGNA

DL NUG-95

|               |                       | Analytical | _            |       | Nominei   |              |
|---------------|-----------------------|------------|--------------|-------|-----------|--------------|
|               | Percent<br>of Mominal | Result     | Test         |       | entration |              |
| •ι            | OT NORTHEL            | (MG/L)     | Day          |       | (HG/L)    | Sample ID    |
| .5 =          | 96.5                  | 3.8596+01  | 0            | DAY   | 40.0      | 8-95-340C1   |
| .5            | 96.5                  | 9.649E+00  | 0            | DAY   | 10.0      | 7-95-350C2   |
| 18 ( <u>Z</u> | 118                   | 2.950E+00  | 0            | DAY   | 2.50      | 8-95-360C3   |
| .2            | 82.2                  | 3.287E+01  | 0 (1)        | DAY   | 40.0      | 8-95-750C1   |
| .9            | 84.9                  | 8.493E+00  | <b>a</b> (1) | DAY   | 10.0      | 8-95-76002   |
| .0            | 91.0                  | 2.2748+00  | G (1)        | DAY   | 2.50      | 8-95-77903   |
| .8            | 101.8                 | 4.071E+01  | 7            | DAY   | 40.0      | 8-95-245QC1  |
| .9            | 94.9                  | 9.4948+00  | 7            | DAY   | 10.0      | 8-95-2460CZ  |
| .6            | 97.6                  | 5.439£+00  | 7            | DAY   | 2.50      | 8-95-247003  |
| .7            | 106.7                 | 4.268E+01  | 7 (1)        | DAY   | 40.0      | 8-95-2509C1  |
|               | 97.9                  | 9.7925+00  | 7 (1)        | DAY   | 10.0      | 8-95-251002  |
| .0            | 92.0                  | 2.301E+00  | 7 (1)        | DAY   | 2.50      | 8-95-2529C3  |
|               | 89.8                  | 3.592E+01  | 14           | DAY   | 40.0      | 8-95-749QC1  |
| ٠.٤           | 92.4                  | 9.2396+00  |              | · DAY | 10.0      | 8-95-750ac2  |
| 86 (2         | 186                   | 4.645E+00  | 14           | DAY   | 2.50      | 8-96-7519C3  |
| 03            | 103                   | 4.120E+01  | 14 (1)       | DAY   | 40.0      | 8-95-7579C1  |
| 01            | 101                   | 1.008E+01  | 14 (1)       | DAT   | 10.0      | 8-95-7580CZ  |
| 81 (2         | 181                   | 4.U53E 400 | 14 (1)       | DAT   | 2.50      | 8-95-7599C3  |
| .4            | 97.4                  | 3.8966+01  | 21           | DAY   | 40.0      | 8-95-10579C1 |
| .o (2)        | 72.0                  | 7.203E+00  | 21           | DAY   | 10.0      | 8-95-10589C2 |
| .6 - 3        | 93.4                  | 2.3365+00  | 21           | DAY   | 2.50      | 8-95-1059003 |
| .8            | 92.8                  | 3.7106+01  | 21 (1)       | DAY   | 40.0      | 8-95-10650C1 |
| .5            | 87.5                  | 8.746E+00  | 21 (1)       | DAY   | 10.0      | 8-95-10669CZ |
| .7            | 97.7                  | 2.443E+00  | 21 (1)       | DAY   | 2.50      | 8-95-10679C3 |

<sup>(1)</sup> These quality control samples were filtered through syringe filters prior to extraction.

<sup>(2)</sup> These quality control samples are outside the three standard deviation of 80.7 to 111. These values were not used in the mean.



```
Metachlor: Number of Live Offspring
File: 43802601.you Transform: NO TRANSFORM
                                                  Ho:GRP1 MEAN = GRP2 MEAN
      t-test of Solvent and Blank Controls
GRP1 (SOLVENT CRTL) MEAN = 840.5000 CALCULATED t VALUE = -1.0977
GRP2 (BLANK CRTL) MEAN = 922.0000
DIFFERENCE IN MEANS = -81.5000
                                      DEGREES OF FREEDOM =
TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05
TABLE t VALUE (0.01(2), 6) = 3.707
                                     NO significant difference at alpha=0.01
Chi-square test for normality: actual and expected frequencies
INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5
                                                       6.776
                                          10.696
                                                                    1.876
EXPECTED
            1.876
                          6.776
                                          8
                                                       10
                                                                    0
OBSERVED
          1
Calculated Chi-Square goodness of fit test statistic = 5.2285
Table Chi-Square value (alpha = 0.01) = 13.277
Data PASS normality test. Continue analysis.
Shapiro - Wilk's test for normality
D = 213012.000
W = 0.979
Critical W (P = 0.05) (n = 28) = 0.924
Critical W (P = 0.01) (n = 28) = 0.896
Data PASS normality test at P=0.01 level. Continue analysis.
TITLE:
           Metachlor: Number of Live Offspring
FILE:
          43802601.you
TRANSFORM: NO TRANSFORMATION
                                           NUMBER OF GROUPS: 6
G
```

| GRP     | IDENTIFICATION  | REP           | VALUE     | TRANS VALUE |   |
|---------|-----------------|---------------|-----------|-------------|---|
| 1       | GRPS 1&2 POOLED | 1             | 942.0000  | 942.0000    |   |
| 1       | GRPS 1&2 POOLED | 2<br>3        | 747.0000  | 747.0000    | • |
| 1       | GRPS 1&2 POOLED | 3             | 711.0000  | 711.0000    |   |
| 1       | GRPS 1&2 POOLED | 4             | 962.0000  | 962.0000    |   |
| 1       | GRPS 1&2 POOLED | 5             | 998.0000  | 998.0000    |   |
| 1       | GRPS 1&2 POOLED | 6             | 911.0000  | 911.0000    |   |
| 1       | GRPS 1&2 POOLED | 7             | 828.0000  | 828.0000    |   |
| 1       | GRPS 1&2 POOLED | 8             | 951.0000  | 951.0000    |   |
| 2       | 0.87            | 1             | 845.0000  | 845.0000    |   |
| 2       | 0.87            | 2<br>3        | 1037.0000 | 1037.0000   |   |
| 2 2 2 3 | 0.87            |               | 889.0000  | 889.0000    |   |
| 2       | 0.87            | 4             | 826.0000  | 826.0000    |   |
| 3       | 1.8             | 1             | 740.0000  | 740.0000    |   |
| 3<br>3  | 1.8             | 2<br><b>3</b> | 1035.0000 | 1035.0000   |   |
| 3       | 1.8             | 3             | 874.0000  | 874.0000    |   |
| 3       | 1.8             | 4             | 899.0000  | 899.0000    |   |
| 4       | 2.9             | 1             | 978.0000  | 978.0000    |   |
| 4       | 2.9             | 2<br>3        | 1054.0000 | 1054.0000   |   |
| 4       | 2.9             | 3             | 1029.0000 | 1029.0000   |   |
| 4       | 2.9             | 4             | 951.0000  | 951.0000    |   |
| 5       | 5.9             | 1             | 956.0000  | 956.0000    |   |
| 5       | 5.9             | 2<br>3        | 1048.0000 | 1048.0000   |   |
| 5<br>5  | 5.9             |               | 1148.0000 | 1148.0000   |   |
|         | 5.9             | 4             | 1074.0000 | 1074.0000   |   |
| 6       | 12              | 1             | 478.0000  | 478.0000    |   |
| 6       | 12              | 2             | 515.0000  | 515.0000    |   |
| 6       | 12              | 3             | 706.0000  | 706.0000    |   |
| 6       | 12              | 4             | 470.0000  | 470.0000    |   |
|         |                 |               |           |             |   |

Metachlor: Number of Live Offspring

File: 43802601.you Transform: NO TRANSFORMATION

#### SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

| GRP | IDENTIFICATION  | N      | MIN                | MAX                  | MEAN               |
|-----|-----------------|--------|--------------------|----------------------|--------------------|
| 1   | GRPS 1&2 POOLED | 8      | 711.000            | 998.000              | 881.250            |
| 2   | 0.87<br>1.8     | 4<br>4 | 826.000<br>740.000 | 1037.000<br>1035.000 | 899.250<br>887.000 |
| 4   | 2.9             | 4      | 951.000            | 1054.000             | 1003.000           |
| 5   | 5.9             | 4      | 956.000            | 1148.000             | 1056.500           |
| 6   | · 12            | 4      | 470.000            | 706.000              | 542.250            |

Metachlor: Number of Live Offspring

File: 43802601.you

Transform: NO TRANSFORMATION

#### SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

| GRP | IDENTIFICATION  | VARIANCE  | SD      | SEM    | C.V. % |
|-----|-----------------|-----------|---------|--------|--------|
| 1   | GRPS 1&2 POOLED | 11347.929 | 106.527 | 37.663 | 12.09  |
| .2  | 0.87            | 9129.583  | 95.549  | 47.774 | 10.63  |
| 3   | 1.8             | 14608.667 | 120.866 | 60.433 | 13.63  |
| 4   | 2.9             | 2202.000  | 46.925  | 23.463 | 4.68   |
| 5   | 5.9             | 6283.667  | 79.270  | 39.635 | 7.50   |
| 6   | 12              | 12301.583 | 110.913 | 55.456 | 20.45  |

Metachlor: Number of Live Offspring

File: 43802601.you

Transform: NO TRANSFORMATION

#### ANOVA TABLE

| SOURCE         | DF | SS         | MS         | F      |
|----------------|----|------------|------------|--------|
| Between        | 5  | 643064.429 | 128612.886 | 13.283 |
| Within (Error) | 22 | 213012.000 | 9682.364   |        |
| Total          | 27 | 856076.429 |            |        |

Critical F value = 2.66 (0.05,5,22) Since F > Critical F REJECT Ho: All equal

Metachlor: Number of Live Offspring

File: 43802601.you Transform: NO TRANSFORMATION BONFERRONI t-TEST - TABLE 1 OF 2 Ho:Control<Treatment

| GROUP | IDENTIFICATION  | TRANSFORMED<br>MEAN | MEAN CALCULATED IN ORIGINAL UNITS | T STAT | SIG |
|-------|-----------------|---------------------|-----------------------------------|--------|-----|
| 1     | GRPS 1&2 POOLED | 881.250             | 881.250                           |        |     |
| 2     | 0.87            | 899.250             | 899.250                           | -0.299 |     |
| 3     | 1.8             | 887.000             | 887.000                           | -0.095 |     |
| 4     | 2.9             | 1003.000            | 1003.000                          | -2.021 |     |
| 5     | 5.9             | 1056.500            | 1056.500                          | -2.908 |     |
| 6     | 12              | 542.250             | 542.250                           | 5.626  | *   |

Bonferroni t table value = 2.51 (1 Tailed Value, P=0.05, df=22,5)

Metachlor: Number of Live Offspring

Transform: NO TRANSFORMATION File: 43802601.you

BONFERRONI t-TEST - TABLE 2 OF 2 Ho:Control<Treatment

NUM OF Minimum Sig Diff % of DIFFERENCE

| GROUP | IDENTIFICATION  | REPS | (IN ORIG. UNITS) | CONTROL | FROM CONTROL |  |
|-------|-----------------|------|------------------|---------|--------------|--|
|       |                 |      |                  |         |              |  |
| 1     | GRPS 1&2 POOLED | 8    |                  |         |              |  |
| 2     | 0.87            | 4    | 151.142          | 17.2    | -18.000      |  |
| 3     | 1.8             | 4    | 151.142          | 17.2    | -5.750       |  |
| 4     | 2.9             | 4    | 151.142          | 17.2    | -121.750     |  |
| 5     | 5.9             | 4    | 151,142          | 17.2    | -175.250     |  |
| 6     | 12              | 4    | 151.142          | 17.2    | 339.000      |  |

Metachlor: Number of Live Offspring

File: 43802601.you Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

| GROUP | IDENTIFICATION  | N | ORIGINAL<br>MEAN | TRANSFORMED<br>MEAN | ISOTONIZED<br>MEAN |
|-------|-----------------|---|------------------|---------------------|--------------------|
| 1     | GRPS 1&2 POOLED | 8 | 881.250          | 881.250             | 934.708            |
| 2     | 0.87            | 4 | 899.250          | 899.250             | 934.708            |
| 3     | 1.8             | 4 | 887.000          | 887.000             | 934.708            |
| 4     | 2.9             | 4 | 1003.000         | 1003.000            | 934.708            |
| 5     | 5.9             | 4 | 1056.500         | 1056.500            | 934.708            |
| 6     | 12              | 4 | 542.250          | 542.250             | 542.250            |

Metachlor: Number of Live Offspring

File: 43802601.you Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

| IDENTIFICATION                                     | ISOTONIZED                                                     | CALC.                                     | SIG   | TABLE                                | DEGREES OF                                                         |
|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-------|--------------------------------------|--------------------------------------------------------------------|
|                                                    | MEAN                                                           | WILLIAMS                                  | P=.05 | WILLIAMS                             | FREEDOM                                                            |
| GRPS 1&2 POOLED<br>0.87<br>1.8<br>2.9<br>5.9<br>12 | 934.708<br>934.708<br>934.708<br>934.708<br>934.708<br>542.250 | 0.887<br>0.887<br>0.887<br>0.887<br>5.626 | *     | 1.72<br>1.80<br>1.83<br>1.84<br>1.85 | k= 1, v=22<br>k= 2, v=22<br>k= 3, v=22<br>k= 4, v=22<br>k= 5; v=22 |

s = 98.399

Note: df used for table values are approximate when v > 20.